
Any questions?
Let us know:

contact@threedotslabs.com

FAQ:
• We issue VAT invoices.

Please provide company details
and Tax ID during checkout.

• It’s possible to pay by wire
transfer. Please contact us with
company details.

https://threedots.tech/event-driven/

LEARN BUILDING
EXTREMELY SCALABLE &
RESILIENT GO BACKENDS

DRIVEN
GO EVENT

Hands-On Online Training by

Event-Driven Architecture is a proven approach to
building modern applications. Your team will learn the
patterns and gain hands-on coding experience building
scalable and resilient Go projects.

BENEFITS FOR YOUR ORGANIZATION:
• Build high-performance systems that scale as the

product grows.

• Minimize production issues and downtime.

• Improve productivity within teams with clear
boundaries and contracts.

UNIQUE HANDS-ON FORMAT:
• Trainees learn by coding and can apply the same ideas

in work projects.

• Available instantly and with no time limit. The training
can be finished anytime — during or after work hours.

• We provide the playground and verify the solutions.

• No risk in experimenting with your product.

Ordering for a team?
10-19 licenses — 10% OFF
20-29 licenses — 20% OFF
30+ licenses — 30% OFF

THE SALE IS OPEN ONLY FOR 2 WEEKS:
28.05.2025 — 11.06.2025.

(The next chance to buy is at least
 6 months away, at a higher price)

You will get lifetime access to the training platform.
We offer Purchasing Power Parity discounts

net/person$450
Looking to learn Go basics?

We built a training to get developers productive quickly:

https://threedots.tech/
go-in-one-evening/

MIŁOSZ SMÓŁKA &
ROBERT LASZCZAK
Since 15 years, we have been working
together on many projects, including the
financial, healthcare, and security domains.
We led teams in startups using Go as the
primary language.

We run the threedots.tech blog and have
written the Go With The Domain: Building
Modern Business Software in Go ebook, which
are some of the most popular resources on
advanced programming patterns in Go.

• Our blog gets 300,000 unique visits
annually, while 16,000 developers subscribe
to our newsletter.

• Inventors of Watermill, the leading Go library
for building event-driven applications.

• Creators of a unique training platform that
lets developers learn by writing code.

• Over 800 developers have joined the previous
editions of Go Event-Driven.

https://threedots.tech/event-driven/?utm_source=brochure
https://threedots.tech/event-driven/?utm_source=brochure
https://threedots.tech/event-driven/?utm_source=brochure
https://threedots.tech/?utm_source=brochure
https://threedots.tech/event-driven/buy/?utm_source=brochure
https://threedots.tech/event-driven/buy/?utm_source=brochure
https://threedots.tech/event-driven/?utm_source=brochure
https://threedots.tech/go-in-one-evening/?utm_source=brochure
https://threedots.tech/go-in-one-evening/
https://threedots.tech/go-in-one-evening/?utm_source=brochure
https://threedots.tech/go-in-one-evening/?utm_source=brochure

BASIC ASYNC

WHAT YOU WILL LEARN

Learn about synchronous and asynchronous
communication patterns to build scalable
and resilient systems

Understand the benefits and challenges
of asynchronous processing to handle high
loads and improve responsiveness

Implement simple asynchronous processing
using goroutines and retries to avoid
blocking and handle temporary failures

YOU WILL IMPLEMENT

• Refactor synchronous
API calls to asynchronous
processing

• Handle temporary errors
with retries in background
workers

EVENTS

WHAT YOU WILL LEARN

Understand the concept of events and
how they differ from messages to build
event-driven systems

Learn how to design and structure events
for maintainability and evolution

Implement event marshalling and
unmarshalling to serialize and deserialize
events

Use event headers for metadata to provide
context and observability

YOU WILL IMPLEMENT

• Refactor the project
to use events instead
of plain messages

• Design and implement
event payloads for
different use cases

• Add event headers
for metadata

MIDDLEWARES

WHAT YOU WILL LEARN

Learn how to use middleware functions to add
cross-cutting concerns and reuse functionality

Implement logging and correlation ID
propagation using middleware to improve
observability and traceability

Understand how to handle dependencies and
configuration in middleware to keep handlers
focused on business logic

YOU WILL IMPLEMENT

• Add logging middleware
to log incoming
messages and errors

• Implement correlation
ID middleware for request
tracing

• Refactor middleware
to handle dependencies
and configuration

COMPONENT TESTING

WHAT YOU WILL LEARN

Understand the importance of component
testing in event-driven systems to ensure
system reliability

Learn how to write mocks for external
dependencies to isolate components and
improve testability

Run the service in a test environment and verify
its behavior to catch integration issues early

YOU WILL IMPLEMENT

• Refactor the project to
allow running the service
in a test environment

• Write mocks for external
dependencies used
in the project

• Implement component tests
for different use cases

AT LEAST ONCE DELIVERY

WHAT YOU WILL LEARN

Understand the concept of at-least-once
delivery in event-driven systems to ensure
message processing

Learn how to handle message redelivery and
idempotency to prevent duplicate processing

Implement idempotent event handlers and
repositories to ensure data consistency

YOU WILL IMPLEMENT

• Store event data in
a database for querying
and consistency

• Implement idempotent event
handlers and repositories

• Handle message redelivery
and ensure data consistency

MESSAGE BROKER

WHAT YOU WILL LEARN

Understand the role of message brokers
in event-driven systems

Learn how to publish and subscribe to
messages using a message broker

Handle errors and retries when processing
messages to ensure reliable message delivery

Use consumer groups for scalability and fault
tolerance to process messages in parallel
and handle failures

YOU WILL IMPLEMENT

• Replace in-memory
message passing with
a production-grade
message broker

• Implement message
publishing and subscribing
using the message broker

• Refactor message handlers
to use the message
broker's features

ROUTER

WHAT YOU WILL LEARN

Learn how to use Watermill to simplify
message routing and handling

How to simplify message handler
implementation and error handling to focus
on business logic

Implement graceful shutdown and health
checks for the message router to ensure
service reliability

YOU WILL IMPLEMENT

• Refactor the project
to use Watermill

• Implement graceful
shutdown for the
message router

• Add health check
endpoints for monitoring
the service

ERRORS

WHAT YOU WILL LEARN

Learn how to handle different types of errors
in event-driven systems to ensure system
resilience

Implement error logging and monitoring using
middleware to detect and diagnose issues

Handle temporary errors, malformed
messages, and code bugs to prevent system
failures and data loss

YOU WILL IMPLEMENT

• Add error logging
middleware to log errors
and message details

• Implement retry
middleware for handling
temporary errors

• Handle malformed
messages and code
bugs gracefully

EVENTS WITH CQRS PATTERN

WHAT YOU WILL LEARN

Learn about the CQRS pattern and how
it relates to event-driven systems to separate
read and write concerns

Understand how to use a high-level event
bus from Watermill to simplify event
publishing and handling

Implement event handlers and processors
using the CQRS component

YOU WILL IMPLEMENT

• Refactor the project
to use the CQRS event
bus from Watermill

• Implement event handlers
and processors using the
CQRS from Watermill

• Use consumer groups for
scaling event processing

OUTBOX

WHAT YOU WILL LEARN

Learn about the outbox pattern for ensuring
data consistency in distributed systems

Understand how to publish events within
database transactions to maintain data
integrity

Implement event forwarding from the outbox
to the message broker to decouple services

YOU WILL IMPLEMENT

• Implement the outbox pattern
for publishing events within
transactions

• Forward events from the
outbox to the message broker

• Refactor the project to use the
outbox pattern for consistency

* Based on average time spent by our trainees

20+
CODING HOURS*

20
MODULES

94
EXERCISES

COMMANDS IN CQRS PATTERN

WHAT YOU WILL LEARN

Understand the difference between
commands and events to model user
intent and system state

Learn how to use the CQRS command
bus for asynchronous processing
to improve system responsiveness

Implement command handlers
and processors

YOU WILL IMPLEMENT

• Refactor the project
to use commands for
asynchronous processing

• Implement command
handlers and processors

• Use separate topics for
commands and events

MESSAGE ORDERING

WHAT YOU WILL LEARN

Understand the challenges of message
ordering in event-driven systems to ensure
data consistency

Learn different strategies for handling
message ordering to prevent race conditions

Implement message ordering using
partitioning and entity versioning to maintain
data integrity

YOU WILL IMPLEMENT

• Refactor the project to
handle message ordering
using different strategies

• Implement message
ordering using partitioning
and entity versioning

• Ensure data consistency
and correctness in the
presence of out-of-order
messages

INTERNAL AND VERSIONED

WHAT YOU WILL LEARN

Understand the concept of internal
and versioned events to manage event
schema evolution

Learn how to evolve events over time without
breaking compatibility to support system
evolution

Implement event versioning and internal event
handling to decouple services

YOU WILL IMPLEMENT

• Add versioning to events
to allow for schema
evolution

• Implement internal events
for use within a single
service or team

• Handle event versioning
and compatibility in
the project

METRICS AND ALERTING

WHAT YOU WILL LEARN

Understand the importance of observability in
event-driven systems to ensure system health
and performance

Learn how to instrument the system
with metrics and alerts to detect and
diagnose issues

Implement metrics and alerts for
monitoring and troubleshooting to improve
system reliability

YOU WILL IMPLEMENT

• Instrument the project with
metrics for monitoring and
troubleshooting

• Set up alerts for detecting
and responding to issues

• Use metrics and alerts to
ensure the system's health
and performance

FAULT TOLERANCE

WHAT YOU WILL LEARN

Understand the importance of fault
tolerance in event-driven systems
to ensure system availability

Learn different strategies for handling
failures and ensuring system resilience
to prevent downtime

Implement fault tolerance using retries,
circuit breakers, and poison queues
to handle errors gracefully

YOU WILL IMPLEMENT

• Implement retry
mechanisms for handling
transient failures

• Use circuit breakers to
prevent cascading failures

• Set up a poison queue for
handling and monitoring
failed messages

READ MODELS

WHAT YOU WILL LEARN

Learn about read models and their role
in event-driven systems to optimize
data for querying

Understand how to build and update read
models from events to maintain data
consistency

Implement read models for different querying
scenarios to improve system performance

YOU WILL IMPLEMENT

• Design and implement
read models for various
querying needs

• Update read models
based on incoming events

• Expose read models
through API endpoints

DATA LAKE

WHAT YOU WILL LEARN

Learn about data lakes and their
role in event-driven systems to store
and analyze events

Understand how to store events in
a data lake for future processing and insights

Implement event storage and retrieval
from a data lake to enable data-driven
decision making

YOU WILL IMPLEMENT

• Store all events in
a central data lake
for future processing

• Implement event
forwarding from the
message broker to
the data lake

• Retrieve events from the
data lake for building read
models or analytics

MIGRATING READ MODELS

WHAT YOU WILL LEARN

Learn how to migrate read models when
event schemas change to maintain
data consistency

Understand the process of rebuilding read
models from a data lake to recover from
data loss or corruption

Implement read model migration and
rebuilding to ensure system resilience

YOU WILL IMPLEMENT

• Migrate read models when
event schemas change

• Rebuild read models
from events stored in
the data lake

• Ensure data consistency
and correctness during
read model migration

TRACING

WHAT YOU WILL LEARN

Learn about distributed tracing and its role
in event-driven systems to understand
system behavior

Understand how to instrument the system
with tracing to identify performance
bottlenecks and errors

Implement tracing for end-to-end visibility
and troubleshooting to improve
system observability

YOU WILL IMPLEMENT

• Instrument the project with
distributed tracing

• Propagate trace context
across service boundaries

• Use tracing for end-to-end
visibility and troubleshooting

SAGAS AND PROCESS MANAGERS

WHAT YOU WILL LEARN

Learn about sagas and process managers
for coordinating long-running processes
to ensure data consistency

Understand the differences between
orchestration and choreography to choose
the right approach

Implement sagas and process managers
for complex business workflows to handle
distributed transactions

YOU WILL IMPLEMENT

• Design and implement sagas
and process managers
for complex workflows

• Handle compensating
actions and rollbacks in
case of failures

• Ensure data consistency
and correctness across
multiple services

* Based on average time spent by our trainees

20+
CODING HOURS*

20
MODULES

94
EXERCISES

