
RETHINKING DDD IN GO
FROM MYTHS TO REDUCED PROJECT COMPLEXITY

ROBERT
LASZCZAK
PRINCIPAL ENGINEER

CO-FOUNDER OF

HOW TO DEVELOP
SOFTWARE MORE

EFFICIENTLY?

COMPLEXITY

essential

accidental

complexity

effort

essential

accidental

complexity

🔥🔥🔥🔥effort

BILLING MATE

BILLING MATE MANAGEMENT

"ONE YEAR AGO, IMPLEMENTING
SUCH A FEATURE TOOK A WEEK;
NOW IT'S TAKING TWO MONTHS;
WHAT'S HAPPENING?"

👾
INVOICE
INVADER

“LET'S HIRE MORE
PEOPLE!"

 "I'M SURE IT'S BECAUSE OUR
APPLICATION IS A MONOLITH
- WE NEED TO SPLIT IT."

MIGRATION TO MICROSERVICES

AND KUBERNETES

BILLING MATE EMPLOYEE

"IT NEEDS TO BE LIKE
THAT, I'VE SEEN IT IN
EVERY COMPANY"

LET’S MEET EMILY

INVOICE Issue date 29.04.2024

1/4/2024
Date of service 29.04.2024
Due date 6.05.2024

From: Billed to:

Robert Laszczak Three Dots Labs
ul. Grzegórzecka 14 Pawia 8/9
31-823 Kraków 31-812 Kraków

Position. Description Quanitity Unit cost Tax rate
[%] Tax amount Total

1 Software development services 1 $90,000.00 23% $20,700.00 $110,700.00

2 Consulting services 1 $8,000.00 23% $1,840.00 $9,840.00

Total 23% $22,540.00 $120,540.00

INVOICE Issue date 29.04.2024

1/4/2024
Date of service 29.04.2024
Due date 6.05.2024

From: Billed to:

Robert Laszczak Three Dots Labs
ul. Grzegórzecka 14 Pawia 8/9
31-823 Kraków 31-812 Kraków

Position. Description Quanitity Unit cost Tax rate
[%] Tax amount Total

1 Software development services 1 $90,000.00 23% $20,700.00 $110,700.00

2 Consulting services 1 $8,000.00 23% $1,840.00 $9,840.00

Total 23% $22,540.00 $120,540.00

CREDIT NOTE Issue date 29.04.2024

CN1/4/2024
Date of service 29.04.2024
Due date 6.05.2024

From: Billed to:

Robert Laszczak Three Dots Labs
ul. Grzegórzecka 14 Pawia 8/9
31-823 Kraków 31-812 Kraków

Position. Description Quanitity Unit cost Tax rate
[%] Tax amount Total

1 Software development services 1 -$81,000.00 23% -$18,630.00 -$99,630.00

Total 23% -$18,630.00 -$99,630.00

Credit not for invoice 1/4/2024

3 TEAMS ENGAGED

7 MICROSERVICES CHANGED

3 MONTHS OF WORK

RESULT: 2 PDFS

✅ DEVELOPING NEW FEATURES - ESSENTIAL COMPLEXITY

✅ HIRING NEW PEOPLE - WE NEED TO HIRE PEOPLE TO SCALE

🤔 MICROSERVICES

WHAT WENT WRONG?

calculations

taxes

invoice-
positions

invoice-printer

configurations

invoice-
validator

invoice-audit

addresses

discounts

essential

accidental

complexity

🔥🔥🔥🔥effort

invoices

taxes

addresses

discounts

DOMAIN-DRIVEN
DESIGN

(DDD)

ME

“DDD IS A SET OF TECHNIQUES
THAT HELPS BUILD COMPLEX
SYSTEMS THAT ARE
MAINTAINABLE IN THE LONG
TERM”

#1
DDD IS NOT THE RIGHT

TOOL FOR SIMPLE
PROJECTS

#2
 DDD IS NOT THE BEST FIT
FOR PROOF OF CONCEPT

OR THROWAWAY
PROJECTS

#3
DDD HELPS

HOLISTICALLY

3 PATTERNS
THAT YOU CAN IMPLEMENT

IN YOUR PROJECT
TOMORROW

#1
ALWAYS KEEP A VALID
STATE IN THE MEMORY

type Invoice struct {
 Number string
 Positions []InvoicePosition
 TotalAmount int
}

type InvoicePosition struct {
 Product string
 Quantity int
 Value int
 TaxRate int
}

type Invoice struct {
 Number string
 Positions []InvoicePosition
 TotalAmount int
}

type InvoicePosition struct {
 Product string
 Quantity int
 Value int
 TaxRate int
}

inv.Positions = append(
 inv.Positions,
 InvoicePosition{
 Product: "Invalid product",
 Quantity: -2,
 Value: -100,
 },
)

est. 1965

ENCAPSULATION

package invoice

type Invoice struct {

 number string

 positions []InvoicePosition

}

func NewInvoice(number string, positions []InvoicePosition) (*Invoice, error) {
 if number == "" {
 return nil, fmt.Errorf("number cannot be empty")
 }
 if len(positions) == 0 {
 return nil, fmt.Errorf("positions cannot be empty")
 }
 for _, position := range positions {
 if position.IsZero() {
 return nil, fmt.Errorf("position cannot be empty")
 }
 }
 return &Invoice{
 number: number,
 positions: positions,
 }, nil

func NewInvoicePosition(
 product string, quantity int, value int, taxRate int) (InvoicePosition, error) {
 if product == "" {
 return InvoicePosition{}, fmt.Errorf("product cannot be empty")
 }
 if quantity <= 0 {
 return InvoicePosition{}, fmt.Errorf("quantity must be greater than 0")
 }
 if value <= 0 {
 return InvoicePosition{}, fmt.Errorf("value must be greater than 0")
 }
 if taxRate < 0 {
 return InvoicePosition{}, fmt.Errorf("taxRate must be greater than or equal to 0")
 }
 return InvoicePosition{
 product: product,
 quantity: quantity,
 value: value,
 taxRate: taxRate,
 }, nil
}

func (i *Invoice) AddPosition(position InvoicePosition) error {

 if position.IsZero() {

 return fmt.Errorf("position cannot be empty")

 }

 i.positions = append(i.positions, position)

 return nil

}

HOW IT HELPS?

#2
KEEP THE DOMAIN PACKAGE

DATABASE AGNOSTIC

database

logic
domain

logic

domain layer

adapters layer

package invoice

type Repository interface {

 CreateInvoiceDraft(ctx context.Context, invoice Invoice) error

 UpdateInvoiceDraft(

 ctx context.Context,

 invoiceNumber InvoiceNumber,

 updateFn func(h *Invoice) (*Invoice, error),

) error

}

type InvoiceRepositoryStub struct {

Invoices map[InvoiceNumber]Invoice

lock sync.Mutex

}

func (s *InvoiceRepositoryStub) CreateInvoiceDraft(ctx context.Context, invoice Invoice) error {

s.lock.Lock()

defer s.lock.Unlock()

if _, ok := s.Invoices[InvoiceNumber(invoice.Number())]; ok {

return fmt.Errorf("invoice already exists")

}

s.Invoices[InvoiceNumber(invoice.Number())] = invoice

return nil

}

#3
REFLECT YOUR BUSINESS

LOGIC LITERALLY

type Invoice struct {
 number InvoiceNumber

 positions []InvoicePosition

 buyer Company
 seller Company

 issueDate time.Time
 dateOfService time.Time
 dueDate time.Time

 isIssued bool
}

type Invoice struct {
 number InvoiceNumber

 positions []InvoicePosition

 buyer Company
 seller Company

 issueDate time.Time
 dateOfService time.Time
 dueDate time.Time

 isIssued bool
}

“ CREDIT NOTE IS A
SPECIAL TYPE OF
INVOICE. INVOICE
POSITIONS VALUE CAN
BE POSITIVE AND
NEGATIVE. BUYER AND
SELLER NEED TO BE
THE SAME AS THE
REFERENCED INVOICE

“ CREDIT NOTE IS A
SPECIAL TYPE OF
INVOICE. INVOICE
POSITIONS VALUE CAN
BE POSITIVE AND
NEGATIVE. BUYER AND
SELLER NEED TO BE
THE SAME AS THE
REFERENCED INVOICE

func NewCreditNote(

referencedInvoice *Invoice,

positions []CreditNotePosition,

dueDate time.Time,

) (*CreditNote, error) {

// ...

return &CreditNote{

number: “CN" + referencedInvoice.Number(),

referenceInvoiceNumber: referencedInvoice.Number(),

positions: positions,

buyer: referencedInvoice.Buyer(),

seller: referencedInvoice.Seller(),

issueDate: time.Now(),

dueDate: dueDate,

CAN I NOW ADD DDD
 TO MY CV?

DOMAIN-DRIVEN
DESIGN IN GO

MYTHS

1. GO IS A SIMPLE LANGUAGE, YOU SHOULD
NOT USE ANY COMPLEX PATTERNS LIKE DDD

2. DDD MAKES CODE MORE COMPLEX AND
HARDER TO READ

3. GO IS NOT A GOOD LANGUAGE FOR
BUSINESS LOGIC AND DDD

GENERALISATION

1. GO IS A SIMPLE LANGUAGE,
YOU SHOULD NOT USE ANY

COMPLEX PATTERNS LIKE DDD
ONLY FOR MORE COMPLEX

PROJECTS

2. DDD MAKES CODE MORE
COMPLEX AND HARDER TO

READ IF YOU WILL USE IT FOR
SIMPLE DOMAINS

3. GO IS NOT A GOOD
LANGUAGE FOR BUSINESS

LOGIC AND DDD

Tactical DDD

Strategic DDD

how to split microservices

architecture

modularisation

DON’T NEED DDD YET?

https://tdl.is/gc24/

https://tdl.is/gc24/

THANKS!
https://tdl.is/gc24/

