RETHINKINGDDDI

FROM MYTHS TO REDUCED PROJECT COMPLEXITY

ROBERT
LASZCZAK

PRINCIPAL ENGINEER /id
co-FOUNDER OF three dotslabs

HOW TO DEVELOP
SOFTWARE MORE
EFFICIENTLY?

— accldental

—— essential

CO WL‘P Lg)(Lt a

HHH G

— accidental

{

. = S y_ ' == “?f"‘; “ f ;
Y =
| ol ¥
r #f; |

| H

7 -
AT - -
o e W <laT = = = = T =TI
> —s

=

COMP Lexitg

BILLING MATE

"ONE YEAR AGO, IMPLEMENTING
SUCHA FEATURE TOOK A WEEK;
NOWIT'S TAKING TWO MONTHS;
WHAT'S HAPPENING?"

NNNNNNNNNNNNNNNNNNNNN

" "INVOICE |
' - INVADER" &

“LET'S HIRE MORE
PEOPLE!"

9,

"ITNEEDS TOBE LIKE
THAT, I'VESEENITIN
EVERY COMPANY"™

LET'SMEET EMILY

I NVO I C E Issue date

Date of service

1/4/2024 Due date

From: Billed to:

Robert Laszczak Three Dots Labs

ul. Grzegorzecka 14 Pawia 8/9

31-823 Krakow 31-812 Krakow

Position. Description Quanitity Unit cost Ta)io/:?te Tax amount

1 Software development services 1 $90,000.00 23% $20,700.00
2 Consulting services 1 $8,000.00 23% $1,840.00

Total 23% $22,540.00

29.04.2024
29.04.2024
6.05.2024

Total

$110,700.00

$9,840.00

$120,540.00

Tax rate

Description Quanitity Unit cost [%] Tax amount Total
Software development services 1 ’ S90,000.00 / 23% $20,700.00 S$110,700.00
N A ii\ R >
Consulting services 1 $8,000.00 23% $1,840.00 $9.840.00

Total 23% $22,540.00 $120,540.00

CREDIT NOTE
CN1/4/2024

From:

Robert Laszczak

ul. Grzegorzecka 14
31-823 Krakow

Position. Description

1 Software development services

Credit not for invoice 1/4/2024

Issue date
Date of service
Due date

Billed to:

Three Dots Labs

Pawia 8/9

31-812 Krakow

Quanitity Unit cost Ta)i;:i‘te Tax amount

23% -$18,630.00

23% -$18,630.00

29.04.2024
29.04.2024
6.05.2024

Total

-$99,630.00

-$99,630.00

3 TEAMS ENGAGED

7 MICROSERVICES CHANGED
3 MONTHS OF WORK
RESULT: 2 PDFS

WHAT WENT WRONG?

DEVELOPING NEW FEATURES - ESSENTIAL COMPLEXITY
HIRING NEW PEOPLE - WE NEED TO HIRE PEOPLE TO SCALE
2 MICROSERVICES

-

invoice-audit

_

4)
discounts
_ J
a)
~ ~ caleulations
/ _ V)
tTaxes
_ W,
~
- 2
J mvoice-
Posi‘t?or\s
_ J
g ~
invoice-printer
_ J
~
addresses
_

~

J

~

\

: Qonpiﬁuro\‘tions

~

_

-

_

nmvoice-
VO\IIJOCCOP

~

_J

HHH G

— accidental

{

. = S y_ ' == “?f"‘; “ f ;
Y =
| ol ¥
r #f; |

| H

7 -
AT - -
o e W <laT = = = = T =TI
> —s

=

COMP Lexitg

4)
discounts
_ J
~)
Taxes
_ //

-

~

INVoIces
_ J

—

_

addresses

~

/

DOMAIN-DRIVEN
DESIGN

(DDD)

“DDDIS ASET OF TECHNIQUES
THAT HELPS BUILD COMPLEX
SYSTEMS THAT ARE
MAINTAINABLEINTHE LONG
TERM"”

#1
DDD IS NOT THE RIGHT

TOOL FORSIMPLE
PROJECTS

#2

DDD IS NOT THE BEST FIT

FOR PROOF OF CONCEPT
OR THROWAWAY

PROJECTS

#3
DDD HELPS
HOLISTICALLY

3 PATTER

THAT YOUCANIN
IN YOUR Pk
TOMOKR

#1
ALWAYS KEEPAVALID
STATE IN THE MEMORY

type Invoice struct {

Number string
Positions []JInvoicePosition
TotalAmount 1int

}

type InvoicePosition struct {
Product string
Quantity int
Value int
TaxRate 1nt

¥

type Invoice struct {
Number string
Positions []InvoicePosition
TotalAmount 1int

inv.Positions = append(

inv.Positions,

} InvoicePosition{
Product: "Invalid product",

type InvoicePosition struct { Quantity: -2,
Product string Value: -100,
Quantity int b
Value int)

TaxRate 1nt

}

est. 1965

ENCAPSULATION

package 1nvoice

type Invoice struct {
number string

positions []InvoicePosition

}

func NewInvoice(number string, positions []InvoicePosition) (*Invoice, error) {

1f number == "" {

return nil, fmt.Errorf("number cannot be empty")
}
1f len(positions) == 0 {

return nil, fmt.Errorf("positions cannot be empty")
}
for _, position := range positions {

1f position.IsZero() {

return nil, fmt.Errorf("position cannot be empty")

}
}

return &Invoice{
number : number ,
positions: positions,
}, nil

func NewInvoicePosition(
product string, quantity int, value int, taxRate int) (InvoicePosition, error) {
1f product == "" {
return InvoicePosition{}, fmt.Errorf("product cannot be empty")
}
1T quantity <= 0 {
return InvoicePosition{}, fmt.Errorf("quantity must be greater than 0")
}
1f value <= 0 {
return InvoicePosition{}, fmt.Errorf('"value must be greater than 0")
}
1f taxRate < 0 {
return InvoicePosition{}, fmt.Errorf('taxRate must be greater than or equal to 0")
}
return InvoicePosition{
product: product,
quantity: quantity,
value: value,

taxRate: taxRate,
}, nmil

func (1 *Invoice) AddPosition(position InvoicePosition) error {
1f position.IsZero() {

return fmt.Errorf("position cannot be empty")

1.positions = append(i.positions, position)

return nil

HOW IT HELPS?

#2
KEEP THE DOMAIN PACKAGE
DATABASE AGNOSTIC

database ¢ m

Logie

domaiwn La yer

aolapters Lager

package 1nvoice

type Repository interface {

CreateInvoiceDraft(ctx context.Context, i1nvoice Invoice) error

UpdateInvoiceDraft(
ctx context.Context,
invoiceNumber InvoiceNumber,
updateFn func(h *xInvoice) (*Invoice, error),

) error

type InvoiceRepositoryStub struct {
Invoices map[InvoiceNumber]Invoice

lock sync.Mutex

func (s *InvoiceRepositoryStub) CreatelInvoiceDraft(ctx context.Context, invoice Invoice) error {

s.lock.Lock ()

defer s.lock.Unlock()

1if , ok := s.Invoices[InvoiceNumber (invoice.Number())]; ok {

return fmt.Errorf("invoice already exists")

}

s.Involices[InvoiceNumber (invoice.Number())] = invoice

return nil

#3
REFLECT YOUR BUSINESS
LOGICLITERALLY

type Invoice struct {
number InvoiceNumber

positions []J]InvoicePosition

buyer Company
seller Company

issueDate time.Time
dateOfService time.Time
dueDate time.Time

isIssued bool

}

type Inv01ce struct {

. T
$number Inv01ceNumber h
kpos1t1ons []Inv01cePo 1tion|

. —1.. ,
'1ssueDate ftime. T1me
' dateOfService |time.Time

[time.Time

CREDITNOTEISA
SPECIAL TYPE OF
INVOICE. INVOICE
POSITIONS VALUE CAN
BE POSITIVEAND
NEGATIVE. BUYERAND
SELLERNEEDTOBE
THE SAME AS THE
REFERENCED INVOICE

func NewCreditNote(

CREDITNOTEISA = —

b referencedInv01ce *Inv01ce,?

L

SPECIALTYPEOF = .ccitions [jcreditnoterosition,
INVOICE. INVOICE
POSITIONS VALUECAN ,,

BE POSITIVE AND return | scred
NEGATIVE.BUYERAND
SELLER NEED TO BE M ;1”5 e
THE SAME AS THE buyers| ced ver ().

REFERENCED INVOICE -52=t [zeterencedtnvoice:sevier),

issueDate: time.Now(),

dueDate time.Time,

*CreditNote, error) {

:ﬁ~referencedlnv01ce Buyer()

CANINOWADDDDD
TOMY CV?

DOMAIN-DRIVEN

DESIGN IN GO
MYTHS

1.GO IS ASIMPLE LANGUAGE, YOUSHOULD
Y COMPLEX PATTERNS LIKEDDD

DMPLEX AND

Tlo

3.GOISNOT AGOOD LANGUACH N
BUSINESS LOGICANDDDD

1. GOISASIMPLELANGUAGE,

YOU SHOULD NOT USE ANY
SOMPLEX PATTERNS LIKE DDD

2.DDD MAKES CODE MORE
COMPLEX ANDHARDERTO

-

Strategic DDL

Y modularisation
how to split micros

architecture

DON'TNEEDDDD YET?

Thanks for attending my talk! Here you can find the materials that may be useful for you.

®M Slides B
&Wild Workouts - fully functional DDD Go project s 9

H B -
W Go With The Domain - our e-book showing how to use DDD in Go B . B

_
T B
I.- ;.

_

https://tdl.is/gc24/

\

ThreeDotsLabs / ~ -
O wild-workouts-go-ddd-example | —

{> Code -) Issues 30 [l Pull requests 2) Discussions

o e https://tdl.is/gc24/

THANKS!

https://tdl.is/gc24/

