## Making Games in Go

(For Fun)

### Miłosz Smółka

## Three Dots Labs

threedots.tech



## Why games?

I used to love coding, but now the job is constant meetings and status reports.

Did I lose my passion?:(

# Code for fun again!

# Why Go? Why not a "real" engine?

## Disclaimer #1 I'm a hobbyist

## Disclaimer #2 It takes some fun out of playing games

# Disclaimer #3 I focus on 2D games

# All materials at the end!

Don't try to remember all of it.

# What is a video game?



```
What's the number? 5
WRONG!!!
What's the number? 9
YOU WIN!!!!
What's the number?
```

What's the number? 5
WRONG!!!!
What's the number? 9
YOU WIN!!!!
What's the number?

???





## What I wish knew at the beginning







## 1, 5, 60 FPS

(Frames Per Second)

## An optical ilusion

Just like a movie.



# But we don't have frames...

# ...so we need to generate them.

(60 per second)

### The Game Loop

```
for {
    DrawFrame(screen)
}
```

### Actually not trivial

```
func DrawFrame(screen) {
    // RENDER PIXELS
    // SOMETHING SOMETHING SHADERS
    // MAGIC GPU CALLS
    // 333
    // FRAME ON THE MONITOR
```

## (Idon't care)

# # Ebitengine™

A dead simple 2D game engine for Go

## Alightweight library with a nice AP

(not a framework)

```
type Game interface {
    Update() error
    Draw(screen *ebiten.Image)
    Layout(width, height int) (int, int)
}
```

#### Let's focus on

Draw

```
type Game struct {}

func (g *Game) Draw(screen *ebiten.Image) {
}
```

#### ebiten. Image

A collection of pixels.



## DrawImage

screen.DrawImage(image, options)

```
var Gopher = LoadImage("gopher.png")

func (g *Game) Draw(screen *ebiten.Image) {
    screen.DrawImage(Gopher, nil)
}
```



### ne screen starts empty every frame

### Executed 60+ times per second

(computers are fast)



### Moving around

(0, 0)• • •



op :=

&ebiten.DrawImageOptions{}

# op.GeoM.Translate(x, y)

```
op:= &ebiten.DrawImageOptions{}
op.GeoM.Translate(300, 50)
```

screen.DrawImage(Gopher, op)





## op. GeoM. Translate() Geo... what?

# A geometry matrix, of course!

Article Talk

Edit View history Tools V

(<del>+</del>)

From Wikipedia, the free encyclopedia

"Matrix theory" redirects here. For the physics topic, see Matrix theory (physics). For other uses of "Matrix", see Matrix (disambiguation).

In mathematics, a matrix (pl.: matrices) is a rectangular array or table of numbers, symbols, or expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object.

For example,

$$\left[ egin{array}{cccc} 1 & 9 & -13 \ 20 & 5 & -6 \end{array} 
ight]$$

is a matrix with two rows and three columns. This is often referred to as a "two-by-three matrix", a "2 imes 3 matrix", or a matrix of dimension 2 imes 3.

Matrices are commonly related to linear algebra. Notable exceptions include incidence matrices and adjacency matrices in graph theory.<sup>[1]</sup> This article focuses on matrices related to linear algebra, and, unless otherwise specified, all matrices represent linear maps or may be viewed as such.

|   | 1        | 2        |   | n                       |
|---|----------|----------|---|-------------------------|
| 1 | $a_{11}$ | $a_{12}$ |   | $a_{1n}$                |
| 2 | $a_{21}$ | $a_{22}$ |   | $a_{2n}$                |
| 3 | $a_{31}$ | $a_{32}$ |   | $a_{3n}$                |
|   | ÷        | ÷        | : | :                       |
| m | $a_{m1}$ | $a_{m2}$ |   | $a_{m_{\color{red} n}}$ |

An  $m \times n$  matrix: the m rows are horizontal and the *n* columns are vertical. Each element of a matrix is often denoted by a variable with two subscripts. For example,  $a_{2,1}$  represents the element at the second row and first column of the matrix.

Square matrices, matrices with the same number of rows and columns, play a major role in matrix theory. Square matrices of a given dimension form a noncommutative ring, which is one of the most common examples of a noncommutative ring. The determinant of a square matrix is a number associated with the matrix, which is fundamental for the study of a square matrix; for example, a square matrix is invertible if and only if it has a nonzero determinant and the eigenvalues of a square matrix are the roots of a polynomial determinant.

### no one cares

#### Instead...

### Think of copypasting an image



### Calls are relative

```
op.GeoM.Translate(10, 0)
op.GeoM.Translate(-3, 0)
// Moved by (7, 0)
```

# The order of drawing matters!

# Draw the background first

```
screen.DrawImage(Background, op)
// ...
screen.DrawImage(Gopher, op)
```



### Don't re-use op

#### Unless you want to.

```
op := &ebiten.DrawImageOptions{}
screen.DrawImage(Background, op)
// ...
op = &ebiten.DrawImageOptions{}
op.GeoM.Translate(300, 50)
screen.DrawImage(Gopher, op)
```

### Scale

op.GeoM.Scale(2.5, 2.5)



# The order matters!

### Scale, then move

```
op.GeoM.Scale(2, 2)
op.GeoM.Translate(300, 0)
```



### Move, then scale

```
op.GeoM.Translate(300, 0) op.GeoM.Scale(2, 2)
```







#### A rule of thumb:

Translate ast

### Rotating

op.GeoM.Rotate(toRadians(90))



### What happened?





#### First, get bounds

```
bounds := Gopher.Bounds()
halfWidth := float64(bounds.Dx() / 2)
halfHeight := float64(bounds.Dy() / 2)
```

#### Move back and forth

```
op.GeoM.Translate(
    -halfWidth,
    -halfHeight,
op.GeoM.Rotate(toRadians(90))
op.GeoM.Translate(
    halfWidth,
    halfHeight,
```



### Flip

Scale with -1

#### The same trick

```
op.GeoM.Translate(
    -halfWidth,
    -halfHeight,
op.GeoM.Scale (1, -1)
op.GeoM.Translate(
    halfWidth,
    halfHeight,
```



#### Color

op.ColorScale.ScaleWithColor(colornames.Red)



#### op.ColorScale.ScaleAlpha(0.5)



#### Drawing Essentials

- Draw()
- image.DrawImage()
- Position
- Scale
- Rotation
- Color & Transparency

#### Combine them!



## We need more than one frame.

#### The Game Logic

Working with the state.

#### State?

```
type Game struct {
    // This is your state
}
```

```
type Vector struct {
   X float64
   Y float64
type Game struct {
   playerPosition *Vector
```

## Hardcoded values are boring

```
op := &ebiten.DrawImageOptions{}
op.GeoM.Translate(300, 50)
screen.DrawImage(Gopher, op)
```

## Use values from the state

```
op := &ebiten.DrawImageOptions{}
op.GeoM.Translate(
    g.playerPosition.X,
    g.playerPosition.Y,
)
screen.DrawImage(Gopher, op)
```

### The state changes over time

#### The Game Loop

```
for {
    DrawFrame(screen)
}
```

#### The Game Loop

```
for {
    Update()
    DrawFrame(screen)
}
```

```
func (g *Game) Update() error {
   return nil
}
```

### One update

One Tick

Running at 60 ticks per second (TPS)

# All in a single loop

Forget goroutines for now

```
func (g *Game) Update() error {
   g.playerPosition.X += 1
   return nil
}
```

# Working with time Counting ticks

```
type Game struct {
   ticks int
}
```

```
g.ticks++

if g.ticks == 120 {
    g.movingLeft = !g.movingLeft
    g.ticks = 0
}
```

#### Not the best API

#### Calculate with

ebiten. TPS()

#### Timers

```
timer := NewTimer(2*time.Second)
g.timer.Update()
if g.timer.IsDone() {
    g.timer.Reset()
```

## Use "% done" to scale values over time

```
op.ColorScale.ScaleAlpha(
    g.timer.PercentDone(),
)
```

# hout

#### No events.

Just if conditions in the Update.

#### IsKeyPressed()

```
if ebiten.IsKeyPressed(ebiten.KeyD) {
    g.playerPosition.X += 1
}
```

#### inpututil.

IsKeyJustPressed()

IsKeyJustReleased()

```
if inpututil.IsKeyJustPressed(
    ebiten.KeySpace) {
    g.jumping = true
}
```

# Similarfor mouse, gamepad, and touch.

## Game Objects

Grouping data.

#### Structs

```
type Object struct {
    Position *Vector
    Image *ebiten.Image
}
```

#### State

```
type Game struct {
  objects []*Object
}
```

#### Drawing

```
for , obj := range g.objects {
    op := &ebiten.DrawImageOptions{}
    op.GeoM.Translate(
        obj.Position.X,
        obj.Position.Y,
    screen.DrawImage(obj.Image, op)
```

```
for _, obj := range g.objects {
   obj.Position.X -= 2
}
```

#### Logic Essentials

- Update
- State
- Timers
- Input
- Game Objects

# Layout

The last method.

#### check the docs

```
func (g *Game) Layout(
    width, height int) (int, int) {
    return width, height
}
```

#### Remember:

# It's an optical illusion



# Just keep on drawing images.

It's all there is.

### Beyond Essentials

Very briefly.

# embed for portable assets

```
//go:embed assets/gopher.png
var gopher []byte

//go:embed assets/*
var assets embed.FS
```



#### text.Draw()

Just like DrawImage ()

```
op := &text.DrawOptions{}
op.GeoM.Translate(250, 180)
text.Draw(
    screen,
    "GAME OVER",
    Font,
    op,
```

# 

#### Animations

Change the sprite over time.



```
var Zombie []*ebiten.Image

type Game struct {
   timer *Timer
   index int
}
```

#### Update

```
g.timer.Update()
if g.timer.IsDone() {
    g.index++
    if g.index >= len(Sprites)-1 {
        g.index = 0
    g.timer.Reset()
```

#### Draw

```
screen.DrawImage(
    Zombie[g.index],
    op,
)
```





## Or simply animate drawing options



### Cameras

Different points of view.



### Draw the game Oh a separate image

# Keep the offscreen

```
type Game struct {
    cameraPosition *Vector
    offscreen *ebiten.Image
}
```

#### Draw

```
g.offscreen.Clear()
g.offscreen.Draw(...)
op.GeoM.Translate(
    -g.cameraPosition.X,
    -g.cameraPosition.Y,
screen.DrawImage(g.offscreen, op)
```

### Update the position

```
q.cameraPosition.X += 1
```



### Hierarchy

Parent + children.

```
type Object struct {
    Position *Vector
    Image *ebiten.Image
    Children []*Object
}
```

### Debug Mode

Cheats on!

#### vector

# Drawing primitive shapes

### Audio

Music & Sound Effects V



### Platforms

# Runs on Web

# Runs on mobile!



## Runs on Nintendo Switch!

## But...

# You're good to go!

# Checkthe materials!

#### **Examples:**

#### 1. Static

- 2. Moved
- 3. Scale
- 4. FirstScaleThenMove
- 5. FirstMoveThenScale
- 6. NaiveRotate
- 7. Rotate
- 8. RotateStepByStep
- 9. Flip
- 10. RGB
- 11. Alpha GOPHER
- 12. Party
- 13. ConstantVelocity
- 14. TicksCounting
- 15. WithTimer

- 16. Objects
- 17. Layers
- 18. Camera
- 19. StaticAnimation
- 20. Animation
- 21. Hierarchy
- 22. CrabsAttack

#### Controls:

- Arrow keys or WASD to change the level
- Esc to show/hide this screen
- Slash (/) to toggle debug mode
- R to restart current scene

#### Thanks!

Go make a game!

tdl.is/mg25

